Menu
BMJ Group
From trainee to consultant, BMJ Group offers doctors around the world tailored information, special events, learning resources and recruitment services at every step along their career path.
... by doctors, for doctors, for patients About BMJ Group Customer Service Subscriptions & Sales Working for BMJ Group BMJ Media Centre BMJ Group Awards Advertising & Sponsorship Rights & Licensing Affinity & Society Publishing Online learning
The leading provider of online exam preparation, helping over 167,000 healthcare professionals to pass their exams. Find out more BMJ Learning BMJ Portfolio BMJ Masterclasses Clinical Leadership Programme Diabetes Qualifications and Courses onExamination Decision support and clinical reference The BMJ Evidence Centre builds evidence into practice, to support improvements in the consistency and quality of health care.
Best Practice Clinical Evidence Evidence Updates Best Health Action Sets
Informatica Systems Informatica Systems delivers performance management systems and innovative software solutions to primary care. Learn more Audit + Contract + Health Checks FrontDesk BMJ Quality
The latest news, research, events, opinion and guidance related to quality and safety in health care.
The 2013 event will take place in London from 16th- 19th April 2013. Find out more BMJ Quality BMJ Quality and Safety International Forum on Quality and Safety in Healthcare The flagship general medical journal, published since 1840, updated daily online, weekly in print and on the iPad.
BMJBMJ Journals division publishes over 40 journals across a broad range of specialties.
BMJ JournalsAn international medical journal written for students by students.
Student BMJ JobsBMJ Careers makes it easy for you to find the right job with the latest healthcare vacancies, upcoming careers fairs, advice on choosing the right specialty, pay and working conditions.
19-20 October 2012 at the Business Design Centre in Islington, London. Register here BMJ Careers Jobs and vacancies at BMJ Group BMJ Careers Fair Community
Join the discussions on our community site doc2doc or our social pages
... by doctors, for doctors, for patientsWe are open for entries! doc2doc Follow BMJ Group on Twitter BMJ Group on Facebook BMJ Group Awards Subscribe My account
Update my details
Manage my emails
BMA Members Sign in Username: * Password: * Forgot your sign in details?BMA membersAthens or your organisation BMJ Helping doctors make better decisions Search bmj.com: Advanced search Home Research Education News Comment Multimedia Specialties Archive Search all BMJ research articles: From18401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012JanFebMarAprMayJunJulAugSepOctNovDec To18401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012JanFebMarAprMayJunJulAugSepOctNovDec Limit by AllResearchMethods and reporting Our online table of contents is updated at least twice each day. Read all articles published in the last 7 days. You can use bmj.com to help you with your continuing medical education. Find out about CME/CPD credits for BMJ articles Keep up to date with cardiology: Access the latest cardiovascular medicine resources from across BMJ Group.
View larger version:In a new windowDownload as PowerPoint SlideFig 1 Number of bariatric surgery procedures performed between 1990 and 2010, by year and type of bariatric surgeryOverall risk of fractureTable 2? shows the overall risk of fracture in bariatric surgery patients compared with matched controls, stratified by fracture type. We did not observe an increase in overall risk for any fracture (8.8 v 8.2 per 1000 person years; adjusted relative risk 0.89, 95% confidence interval 0.60 to 1.33), osteoporotic fracture (0.67, 0.34 to 1.32), or non-osteoporotic fracture (0.90, 0.56 to 1.45). Similar rates for any fracture were observed throughout the different surgical techniques. View this table:View PopupView InlineTable 2 Risk of fracture in bariatric surgery patients compared with controls matched by age, sex, and body mass index, by type of fractureFigure 2? and table 3? demonstrate the change in adjusted relative risk with time after surgery, showing a modestly increased risk over the first three months, followed by a reduction and then a trend towards increasing fracture risk after three to five years. However, none of these trends achieved statistical significance, and overall there was no significant interaction between bariatric surgery and time. Our sensitivity analysis showed similar findings when we restricted the sets to bariatric surgery with only recent records of body mass index. Table 2 lists confounders that were included in the final adjusted models.
View larger version:In a new windowDownload as PowerPoint SlideFig 2 Spline regression plot of time since bariatric surgery and risk of any fracture in bariatric surgery patients versus matched controls. Risk adjusted for confounders as shown in table 2View this table:View PopupView InlineTable 3 Risk of any fracture in bariatric surgery patients and matched controls over timeRisk factors for fracture in bariatric surgery patientsFor bariatric surgery patients, use of anxiolytics in the previous six months (adjusted relative risk 1.82, 95% confidence interval 1.06 to 3.15), and a history of cerebrovascular disease (8.26, 4.40 to 15.52) or previous fracture (2.44, 1.59 to 3.76) raised the risk of fracture. Use of antidepressants, antidiabetics, proton pump inhibitors, or statins within six months did not significantly alter fracture risk within these patients (data not shown).Influence of excess reduction in body mass index after surgeryAlthough we saw a trend towards an increased risk of fracture with greater reduction of excess body mass index after surgery, this was not significant (table 4?). However, this analysis had limited statistical power. Thus, compared with patients with a medium excess loss in body mass index (1-50%), the adjusted relative risk was 0.32 (95% confidence interval 0.04 to 2.57) in those with no excess loss in body mass index, and 1.46 (0.55 to 3.85) in those who lost over 50% of their excess body mass index. The association between body mass index loss and fracture risk remained similar after we included only patients with a body mass index recording in the two months before bariatric surgery.View this table:View PopupView InlineTable 4 Risk of any fracture in bariatric surgery patients, by excess body mass index change during follow-upDiscussionTo our knowledge, this is the first study to investigate fracture risk in patients who underwent bariatric surgery versus matched controls. Although we observed a possible rise in fracture risk at three to five years after surgery, overall, we were not able to demonstrate a significantly increased risk of any, non-osteoporotic, or osteoporotic fracture with bariatric surgery. We saw a trend towards increasing fracture risk with greater magnitude of excess reduction in body mass index after bariatric surgery, but again, this was not significant.Comparison with other studiesAlthough no fracture studies have compared bariatric surgery patients with matched controls so far, our findings are indirectly supported by a meta-analysis by De Laet and colleagues.39 They showed that a decrease in body mass index was less predictive of fracture in obese patients (>30) than in those with a body mass index of less than 30. For example, when comparing patients with a body mass index of 15 and 20, the researchers found a 3.7-fold elevated risk of hip fracture in the leaner patients. However, when comparing those with a body mass index of 30 and 35, the relative risk was much lower (non-significant 1.1-fold increase in leaner patients). The authors suggested that leanness is a much more important risk factor for fracture, rather than considering obesity as a protective factor. A study by Nakamura and colleagues estimated fracture rates in bariatric surgery patients, but could not compare this group with controls matched by body mass index.40 Although they do suggest an increased risk based on expected age and sex specific incidence, this difference may well be the effect of obesity related comorbidities (as we have shown in our baseline characteristics).So far, studies on bariatric surgery and bone effects have been limited to a number of reports on bone resorption markers and bone mineral density.10 14 15 16 17 18 19 21 22 23 24 25 26 27 Although the effect seemed to be small and varied between studies, the results suggested that bariatric surgery might negatively affect bone outcomes. For example, Giusti and colleagues reported a slight decrease in bone mineral density at the femoral neck (-5.8%), trochanter (-6.5%), but not at the lumbar spine (+8.0%), two years after gastric banding procedures.6 Similarly, Guney and colleagues showed a 9.9% drop in bone mineral density at the femoral neck, one year after vertical banded gastroplasty.6 10 The detrimental effect on bone seemed to be less apparent with malabsorptive procedures. Ten years after biliopancreatic diversion, a 4.2% decrease in spinal bone mineral density was found, but no significant change in hip bone mineral density.16 For the Roux-en-Y gastric bypass, a combined restrictive and malabsorptive procedure, decreases in femoral bone mineral density were found to be as low as 3.5% after two years,23 and as high as 10% after one year.27The reduction in bone mineral density after bariatric surgery may have several biological mechanisms. Firstly, a fall in bone active adipocyte hormones (oestrogen and leptin) following bariatric surgery may initiate bone loss. Oestrogen depletion has been associated with vertical banded gastroplasty (22% reduction after one year),10 and is strongly linked to bone loss in perimenopausal women.41 Decreased leptin levels as a result of weight loss could enhance osteoclast activity and therefore initiate bone loss,12 13 and alter the balance between osteoblast and adipocyte formation. Secondly, lowered levels of insulin and amylin could follow weight loss, resulting in enhanced osteoclast recruitment and inhibition of osteoblast activity.12 Thirdly, although evidence is conflicting, malabsorptive procedures could be linked with calcium and vitamin D deficiency (both are associated with a decrease in bone mineral density and increased fracture risk).42 Since malabsorptive procedures (including combined restrictive or malabsorptive procedures, such as the Roux-en-Y gastric bypass) are more likely to lead to malnutrition (hypocalcaemia) and vitamin deficiencies than restrictive procedures (for example, gastric banding),43 risk of fracture could differ between these surgical techniques. Although limited in statistical power, our study did not observe such a difference in fracture risk between gastric banding and Roux-en-Y gastric bypass. Finally, the effect of bariatric surgery on bone might also depend not only on the type of surgical procedure itself, but also on the degree of sarcopenia caused or accelerated by marked weight loss.Alternatively, the observed decrease in bone mineral density might be explained by measurement errors of bone mineral density in morbidly obese patients.6 Variability of bone mineral density rises substantially when soft tissue depths exceed 25 cm.44 Moreover, Madsen and colleagues showed that fat around bone could falsely increase measured levels of bone mineral density.45 As a consequence, reported falls in bone mineral density at femoral and trochanter sites after bariatric surgery could have been overestimated.Strengths and limitations of the studyOur study has several strengths. To the best of our knowledge, this is the first cohort of bariatric surgery patients in which the risk of fracture has been investigated. We had a statistical power of 88% to detect a relative risk of at least 1.6. Our data sources had detailed longitudinal information on drug prescribing and other risk factors for fracture, such as smoking status. Furthermore, since 2004, body mass index is very well registered within the Clinical Practice Research Datalink (>85%), which is a result of the introduction of the Quality Outcomes Framework in 2004. This allowed us to match controls by body mass index accurately, which is important given the association between body weight and bone mineral density.12A major limitation of this study was that body mass index was not routinely collected over short time intervals. We therefore selected the most recent recording of body mass index, assuming this information has not substantially changed over time (before surgery). This lack of data also limited our statistical power in the analysis evaluating the influence of excess reduction in body mass index. Therefore, it was not possible to draw definite conclusions about the role of the magnitude of reduction in body mass index after bariatric surgery. Although obese patients probably change weight continuously, and we did not have information on body mass index at the exact day of bariatric surgery, restricting the study population to those with records in the previous two months did not substantially change the results. Furthermore, the Clinical Practice Research Datalink describes events that occurred or were recorded in general practice. Events occurring in secondary or intermediary services could therefore be incompletely ascertained. In addition, we did not have information on bone mineral density, which could have been useful for determining the underlying biological mechanism in the association between bariatric surgery and fracture. We cannot exclude the possibility of confounding by (contra)indication in this study. The National Institute for Health and Clinical Excellence guidelines recommend bariatric surgery in morbidly obese patients, preferably with coexisting diseases (for example, type 2 diabetes and hypertension) that could be improved by weight loss.43 We did not have information on whether patients were considered for bariatric surgery and then did not undergo an operation because of lack of associated comorbidities. However, since these comorbidities were probably not associated with reduced fracture rate, it is unlikely that this consideration would reduce our ability to detect a difference in fracture rate between bariatric surgery and control patients. Although a possibility of residual confounding due to unmeasured unbalances between the two study groups still exists, controls in this study seemed to be healthier (with fewer obesity related comorbidities) than patients who underwent bariatric surgery, and could therefore not have masked a true association between bariatric surgery and fracture. Furthermore, poor general fitness (associated with a loss in bone mineral density) may be a reason to not undergo bariatric surgery. Sjöström and colleagues showed that bariatric surgery patients were more physically active than obese controls.46 Although we adjusted for factors such as hypertension and use of glucose lowering drugs, we could not adjust for physical activity. However, this healthy user bias would have probably resulted in a decreased fracture risk shortly after surgery, whereas we found a trend towards the opposite. It is usual for patients to modify their diet before surgery to reduce the fat and glycogen content of the liver. This diet may be based on solid or liquid foods. We did not have information on perioperative diet, and therefore were not able to adjust for this potential confounder, but feel that such dietary change over the period of a few weeks would be unlikely to substantially alter fracture risk, particularly because the diet is aimed to preserve muscle tissue. We used a widely accepted definition of osteoporotic and non-osteoporotic fracture types, but it is difficult to be sure about fracture cause based simply on fracture site, with no information on the level of trauma. Finally, we had a relatively short follow-up time (median time 2.2 years for bariatric surgery patients), which yielded a reduced power to exclude an increase in fracture risk beyond five years. What is already known on this topicBariatric surgery can be considered among patients with morbid obesityBariatric surgery has been linked to a reduction in bone mineral density, although fracture rates compared with matched controls are unknownWhat this study addsBariatric surgery does not have a significant effect on fracture riskHowever, there could be an increase in risk after three to five years and in patients who have a greater decrease in body mass index after surgeryNotesCite this as: BMJ 2012;345:e5085FootnotesContributors: All authors drafted the article, revised it critically for important intellectual content, and approved the final version to be published. CC had full access to all the data in the study and is the study guarantor. All authors were responsible for the study concept and design, and participated in the analysis and interpretation of data. AL led the statistical analysis. CC and NCH were responsible for the data acquisition.Funding: This study was funded by a research grant from the International Osteoporosis Foundation and SERVIER. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Competing interests: All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: support from the International Osteoporosis Foundation and SERVIER for the submitted work; AL, FV, MB, and TS are employed by the Division of Pharmacoepidemiology and Clinical Pharmacology at Utrecht Institute for Pharmaceutical Sciences, which has received unrestricted research funding from the Netherlands Organisation for Health Research and Development, Dutch Health Care Insurance Board, Royal Dutch Pharmacists Association, private-publicly funded Top Institute Pharma (www.tipharma.nl, which includes cofunding from universities, government, and industry), EU Innovative Medicines Initiative, EU 7th Framework Program, Dutch Medicines Evaluation Board, Dutch Ministry of Health and industry (including GlaxoSmithKline, Pfizer); no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.Ethical approval: The Clinical Practice Research Datalink group obtained ethical approval from a multicentre research ethics committee for a purely observational research using data from the database, such as ours. This study obtained approval for the independent scientific advisory committee of the Clinical Practice Research Datalink, which is responsible for reviewing protocols for scientific quality.Data sharing: No additional data availableThis is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.References?Björntorp P. Obesity. Lancet1997;350:423-6.OpenUrlCrossRefMedlineWeb of Science?Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA2010;303:235-41.OpenUrlCrossRefMedline?Martin LF, Hunter SM, Lauve RM, O’Leary JP. Severe obesity: expensive to society, frustrating to treat, but important to confront. South Med J 1995;88:895-902.OpenUrlCrossRefMedlineWeb of Science?Stunkard AJ. Current views on obesity. Am J Med 1996;100:230-6.OpenUrlCrossRefMedlineWeb of Science?Kolanowski J. Surgical treatment for morbid obesity. Br Med Bull1997;53:433-44.OpenUrlFREE Full Text?Giusti V, Gasteyger C, Suter M, Heraief E, Gaillard RC, Burckhardt P. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow-up. Int J Obes (Lond)2005;29:1429-35.OpenUrlCrossRefMedline?Cundy T, Evans MC, Kay RG, Dowman M, Wattie D, Reid IR. Effects of vertical-banded gastroplasty on bone and mineral metabolism in obese patients. Br J Surg1996;83:1468-72.OpenUrlMedlineWeb of Science?Olmos JM, Vázquez LA, Amado JA, Hernández JL, González Macías J. Mineral metabolism in obese patients following vertical banded gastroplasty. Obes Surg2008;18:197-203.OpenUrlCrossRefMedlineWeb of Science?Pugnale N, Giusti V, Suter M, Zysset E, Heraief E, Gaillard RC, et al. Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese pre-menopausal women. Int J Obes (Lond)2003;27:110-6.OpenUrlCrossRef?Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R, Kabalak T. Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg2003;13:383-8.OpenUrlCrossRefMedline?DiGiorgi M, Daud A, Inabnet WB, Schrope B, Urban-Skuro M, Restuccia N, et al. Markers of bone and calcium metabolism following gastric bypass and laparoscopic adjustable gastric banding. Obes Surg2008;18:1144-8.OpenUrlCrossRefMedline?Reid IR. Relationships among body mass, its components, and bone. Bone2002;31:547-55.OpenUrlCrossRefMedlineWeb of Science?Meier CA, Bobbioni E, Gabay C, Assimacopoulos-Jeannet F, Golay A, Dayer J-M. IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab 2002;87:1184-8.OpenUrlFREE Full Text?Bano G, Rodin DA, Pazianas M, Nussey SS. Reduced bone mineral density after surgical treatment for obesity. Int J Obes (Lond)1999;23:361-5.OpenUrlCrossRef?Adachi Y, Shiota E, Matsumata T, Iso Y, Yoh R, Kitano S. Osteoporosis after gastrectomy: bone mineral density of lumbar spine assessed by dual-energy X-ray absorptiometry. Calcif Tissue Int 2000;66:119-22.OpenUrlCrossRefMedlineWeb of Science?Marceau P, Biron S, Lebel S, Marceau S, Hould FS, Simard S, et al. Does bone change after biliopancreatic diversion? J Gastrointest Surg 2002;6:690-8.OpenUrlCrossRefMedlineWeb of Science?Newbury L, Dolan K, Hatzifotis M, Low N, Fielding G. Calcium and vitamin D depletion and elevated parathyroid hormone following biliopancreatic diversion. Obes Surg2003;13:893-5.OpenUrlCrossRefMedlineWeb of Science?Slater GH, Ren CJ, Siegel N, Williams T, Barr D, Wolfe B, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg2004;8:48-55.OpenUrlCrossRefMedlineWeb of Science?Hamoui N, Kim K, Anthone G, Crookes PF. The significance of elevated levels of parathyroid hormone in patients with morbid obesity before and after bariatric surgery. Arch Surg2003;138:891-7.OpenUrlCrossRefMedlineWeb of Science?Chapin BL, LeMar HJ, Knodel DH, Carter PL. Secondary hyperparathyroidism following biliopancreatic diversion. Arch Surg1996;131:1048-52.OpenUrlCrossRefMedlineWeb of Science?Valderas JP, Velasco S, Solari S, Liberona Y, Viviani P, Maiz A, et al. Increase of bone resorption and the parathyroid hormone in postmenopausal women in the long-term after Roux-en-Y gastric bypass. Obes Surg2009;19:1132-8.OpenUrlCrossRefMedline?Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab2004;89:1061-5.OpenUrlFREE Full Text?Von Mach M-A, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U. Changes in bone mineral content after surgical treatment of morbid obesity. Metab Clin Exp2004;53:918-21.OpenUrlCrossRefMedline?Goode LR, Brolin RE, Chowdhury HA, Shapses SA. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res 2004;12:40-7.OpenUrlMedlineWeb of Science?Vilarrasa N, Gómez JM, Elio I, Gómez-Vaquero C, Masdevall C, Pujol J, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg2009;19:860-6.OpenUrlCrossRefMedline?Gómez JM, Vilarrasa N, Masdevall C, Pujol J, Solano E, Soler J, et al. Regulation of bone mineral density in morbidly obese women: a cross-sectional study in two cohorts before and after bypass surgery. Obes Surg2009;19:345-50.OpenUrlCrossRefMedline?Johnson JM, Maher JW, Samuel I, Heitshusen D, Doherty C, Downs RW. Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone, and vitamin D. J Gastrointest Surg 2005;9:1106-10.OpenUrlCrossRefMedlineWeb of Science?Van Staa TP, Abenhaim L, Cooper C, Zhang B, Leufkens HG. The use of a large pharmacoepidemiological database to study exposure to oral corticosteroids and risk of fractures: validation of study population and results. Pharmacoepidemiol Drug Saf2000;9:359-66.OpenUrlCrossRefMedlineWeb of Science?Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of diagnoses in the General Practice Research Database: a systematic review. Br J Clin Pharmacol2010;69:4-14.OpenUrlCrossRefMedlineWeb of Science?Khan NF, Harrison SE, Rose PW. Validity of diagnostic coding within the General Practice Research Database: a systematic review. Br J Gen Pract2010;60:e128-36.OpenUrlCrossRefMedline?Lewis JD, Brensinger C. Agreement between GPRD smoking data: a survey of general practitioners and a population-based survey. Pharmacoepidemiol Drug Saf2004;13:437-41.OpenUrlCrossRefMedlineWeb of Science?FRAX. WHO Fracture Risk Assessment Tool. 2001. shef.ac.uk. www.shef.ac.uk/FRAX/charts.jsp.?Lalmohamed A, Welsing PMJ, Lems WF, Jacobs JWG, Kanis JA, Johansson H, et al. Calibration of FRAX ® 3.1 to the Dutch population with data on the epidemiology of hip fractures. Osteoporos Int2012;23:861-9.OpenUrlCrossRefMedline?Pouwels S, Lalmohamed A, Leufkens B, de Boer A, Cooper C, van Staa T, et al. Risk of hip/femur fracture after stroke: a population-based case-control study. Stroke2009;40:3281-5.OpenUrlFREE Full Text?Pouwels S, Lalmohamed A, Souverein P, Cooper C, Veldt BJ, Leufkens HG, et al. Use of proton pump inhibitors and risk of hip/femur fracture: a population-based case-control study. Osteoporos Int2011;22:903-10.OpenUrlCrossRefMedline?Pouwels S, Van Staa TP, Egberts ACG, Leufkens HGM, Cooper C, De Vries F. Antipsychotic use and the risk of hip/femur fracture: a population-based case-control study. Osteoporos Int2009;20:1499-506.OpenUrlCrossRefMedline?De Vries F, Pouwels S, Lammers JWJ, Leufkens HGM, Bracke M, Cooper C, et al. Use of inhaled and oral glucocorticoids, severity of inflammatory disease and risk of hip/femur fracture: a population-based case-control study. J Intern Med2007;261:170-7.OpenUrlMedlineWeb of Science?Lalmohamed A, Vestergaard P, Klop C, Grove EL, de Boer A, Leufkens HG, et al. Timing of acute myocardial infarction in patients undergoing total hip or knee replacement: a nationwide cohort study. Arch Intern Med2012, 23 July, doi:10.1001/archinternmed.2012.2713.?De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int2005;16:1330-8.OpenUrlCrossRefMedlineWeb of Science?Nakamura K, Haglind E, Clowes J, Achenbach S, Atkinson E, Melton LJ, et al. ENDO conference abstract: fracture risk after bariatric surgery. ENDO Conference, 2009.?Recker R, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res2000;15:1965-73.OpenUrlCrossRefMedlineWeb of Science?Viégas M, Vasconcelos RS de, Neves AP, Diniz ET, Bandeira F. Bariatric surgery and bone metabolism: a systematic review. Arq Bras Endocrinol Metabol2010;54:158-63.OpenUrlCrossRefMedline?Leff DR, Heath D. Surgery for obesity in adulthood. BMJ2009;339:b3402.OpenUrlFREE Full Text?Van Loan MD, Johnson HL, Barbieri TF. Effect of weight loss on bone mineral content and bone mineral density in obese women. Am J Clin Nutr 1998;67:734-8.OpenUrlFREE Full Text?Madsen OR, Jensen JE, Sørensen OH. Validation of a dual energy X-ray absorptiometer: measurement of bone mass and soft tissue composition. Eur J Appl Physiol Occup Physiol1997;75:554-8.OpenUrlCrossRefMedlineWeb of Science?Sjöström L, Lindroos A, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Eng J Med2004;351:2683-93.OpenUrlCrossRefMedlineWeb of Science
CiteULike
Connotea
Del.icio.us
Digg
Facebook
Mendeley
Reddit
Twitter
Stumbleupon Latest jobsUK jobsInternational jobsUK jobs AXESS LTD, EU MEDICAL ADVISER. (23 Aug 2012)SOLENT NHS TRUST SPECIALTY DOCTOR COMMUNITY SEXUAL AND REPRODUCTIVE HEALTHCARE (23 Aug 2012)Sessional roles for Doctors Scotland: (23 Aug 2012)UNIVERSITY OF LIVERPOOL SENIOR LECTURER (CLINICAL) IN NEONATOLOGY (23 Aug 2012) show me all jobs >> International jobs DOCTORS - ENJOY THE GREAT LIFESTYLE in Australia and New Zealand. SHO/ Registrar/ Consultant and GP openings. (6 Jul 2012)International Medical Recruitment - Medical Jobs in Australia and New Zealand (24 Aug 2012)Saudi Arabia - UAE - Kuwait On behalf of clients Shamco International Recruitment would like to invite applicants for various positions (24 Aug 2012)The Eureka Medical and Bougainvillea Clinic Consultants in General Internal Medicine and Paediatrics required in the British Virgin Islands (23 Aug 2012) show me all jobs >> Rapid responses Latest ResponsesMost responsesLatest Responses Re: Roy Simpson Published 24 August 2012 Why corporate power is a public health priority Published 24 August 2012 Cervical Intraepithelial Neoplasia and Pregnancy Management Published 24 August 2012 Incentives Published 24 August 2012 Re: Unhappy pills Published 24 August 2012 more Most responses Unhappy pills (11 responses) Published 10 August 2012
Transcatheter aortic valve implantation (TAVI): risky and costly (8 responses)Published 31 July 2012
We should not let families stop organ donation from their dead relatives (8 responses)Published 7 August 2012
Diagnosis and management of cellulitis (8 responses)Published 7 August 2012
Association between psychological distress and mortality: individual participant pooled analysis of 10 prospective cohort studies (7 responses)Published 31 July 2012
more THIS WEEK'S POLLRead related article
See previous polls
Recent blogs and podcastsBlogsPodcastsBlogs Domhnall MacAuley: Santa Claus and Lance Armstrong (24 Aug 2012)Tiago Villanueva: Does it matter where you do your medical training? (23 Aug 2012)James Drife: Doctors on the Fringe (22 Aug 2012)Steve Yentis: Infamous names in anaesthesia—part two (21 Aug 2012)Tessa Richards: Personal information empowers and its shift to the people makes sense (20 Aug 2012) more >> Podcasts Ecological public health (24 Aug 2012)Fighting the food giants (17 Aug 2012)Is the drug pipeline really drying up? (10 Aug 2012)Renal patient records (3 Aug 2012)Shift workers' health and assessing risk of violence (27 Jul 2012) more >> BMJ most popular Most sharedMost searchedMost shared Sample size calculations: should the emperor’s clothes be off the peg or made to measure? (804 views)The truth about sports drinks (696 views)When financial incentives do more good than harm: a checklist (650 views)Cochrane review finds no proved benefit in drug treatment for patients with mild hypertension (598 views)Myalgia while taking statins (589 views) Most searched Kathleen Hilditchguyattchronic liver diseasehow to read a paperFrance Follow BMJ OnView the original article here
This post was made using the Auto Blogging Software from WebMagnates.org This line will not appear when posts are made after activating the software to full version.
ليست هناك تعليقات:
إرسال تعليق