Menu
BMJ Group
From trainee to consultant, BMJ Group offers doctors around the world tailored information, special events, learning resources and recruitment services at every step along their career path.
... by doctors, for doctors, for patients About BMJ Group Customer Service Subscriptions & Sales Working for BMJ Group BMJ Media Centre BMJ Group Awards Advertising & Sponsorship Rights & Licensing Affinity & Society Publishing Online learning
The leading provider of online exam preparation, helping over 167,000 healthcare professionals to pass their exams. Find out more BMJ Learning BMJ Portfolio BMJ Masterclasses Clinical Leadership Programme Diabetes Qualifications and Courses onExamination Decision support and clinical reference The BMJ Evidence Centre builds evidence into practice, to support improvements in the consistency and quality of health care.
Best Practice Clinical Evidence Evidence Updates Best Health Action Sets
Informatica Systems Informatica Systems delivers performance management systems and innovative software solutions to primary care. Learn more Audit + Contract + Health Checks FrontDesk BMJ Quality
The latest news, research, events, opinion and guidance related to quality and safety in health care.
The 2013 event will take place in London from 16th- 19th April 2013. Find out more BMJ Quality BMJ Quality and Safety International Forum on Quality and Safety in Healthcare The flagship general medical journal, published since 1840, updated daily online, weekly in print and on the iPad.
BMJBMJ Journals division publishes over 40 journals across a broad range of specialties.
BMJ JournalsAn international medical journal written for students by students.
Student BMJ JobsBMJ Careers makes it easy for you to find the right job with the latest healthcare vacancies, upcoming careers fairs, advice on choosing the right specialty, pay and working conditions.
19-20 October 2012 at the Business Design Centre in Islington, London. Register here BMJ Careers Jobs and vacancies at BMJ Group BMJ Careers Fair Community
Join the discussions on our community site doc2doc or our social pages
... by doctors, for doctors, for patientsWe are open for entries! doc2doc Follow BMJ Group on Twitter BMJ Group on Facebook BMJ Group Awards Subscribe My account
Update my details
Manage my emails
BMA Members Sign in Username: * Password: * Forgot your sign in details?BMA membersAthens or your organisation BMJ Helping doctors make better decisions Search bmj.com: Advanced search Home Research Education News Comment Multimedia Specialties Archive Search all BMJ research articles: From18401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012JanFebMarAprMayJunJulAugSepOctNovDec To18401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012JanFebMarAprMayJunJulAugSepOctNovDec Limit by AllResearchMethods and reporting Our online table of contents is updated at least twice each day. Read all articles published in the last 7 days. You can use bmj.com to help you with your continuing medical education. Find out about CME/CPD credits for BMJ articles Keep up to date with cardiology: Access the latest cardiovascular medicine resources from across BMJ Group.
View larger version:In a new windowDownload as PowerPoint SlideFig 1 Flow of women through studyView this table:View PopupView InlineTable 1 Proportion of births by maternal age at delivery, parity, timing relative to colposcopy, and procedure at colposcopyExternal comparison (population based)The average preterm delivery rate in England between 2000 and 2010 was 6.7% (34?153/510?660, fig 2?). The preterm rate varied from 6.9% in 2000 to 5.9% in 2009, with a minimum of 5.9% in 2009 and a maximum of 7.6% in 2004. Overall, the observed preterm rate in our cohort was 8.8% (1616/18?441), yielding an excess risk of preterm delivery of 2.08 per 100 singleton births (95% confidence interval 1.66% to 2.49%; P<0.001) and a relative risk of 1.31 (95% confidence interval 1.25 to 1.37) compared with the general population. The proportion of births after cervical histology that were preterm was 9.0% (1284/14?265), giving an excess risk of 2.31 per 100 births (1.84% to 2.79%) and a relative risk of 1.35 (1.28 to 1.42) compared with the general population. Similar results were observed for deliveries after treatment (9.4%, 449/4776, table 2?). This relative risk (1.41, 1.29 to 1.54) was significantly (P=0.03, even after allowing for heterogeneity in the meta-analysis) lower than the comparable result in a meta-analysis (1.97, 1.78 to 2.17).14 The proportion of preterm births after histology, however, varied widely by hospital (fig 2) from 6.2% (161/2608, Wirral University Teaching Hospital) to 15.6% (33/212, St Mary’s Hospital, Imperial College) (?211=66.07, P<0.001).
View larger version:In a new windowDownload as PowerPoint SlideFig 2 Proportion of preterm deliveries after colposcopy by study centre, overall, and compared with EnglandView this table:View PopupView InlineTable 2 Summary of analyses and resultsInternal comparisonFor comparisons within the cohort only the first birth recorded in the dataset was included for each woman, and antepartum stillbirths and stillbirths of indeterminate timing were excluded. This left 12?937 births of which 1099 (8.5%) were preterm. Overall, 52.6% (n=578) of these preterm births had a gestational age of 35-36 weeks, 19.3% (n=212) at 33-34 weeks, 17.5% (n=192) at 29-32, and 10.6% (n=171) at 20-28 weeks. The mean maternal age at first recorded delivery (n=12?937) was 31 (interquartile range 27-34) years.Among singleton births delivered after cervical histology, 8.9% (832/9368) were preterm compared with 7.5% (267/3569) of those delivered before the date of histology (table 2). The increase in risk of preterm delivery (adjusted by study site, parity, and maternal age at delivery) was significant (adjusted relative risk 1.32, 95% confidence interval 1.13 to 1.53). Figure 3? plots the relative risks for all 12 study sites: there was no evidence of heterogeneity between sites (?211=11.574, P=0.40).
View larger version:In a new windowDownload as PowerPoint SlideFig 3 Relative risk of preterm birth in women with a birth after compared with before colposcopy The type of sample taken at colposcopy was recorded for 80.6% of births in the cohort (10?423 singleton births) including 77.8% (n=855) of preterm deliveries. Of those that had a delivery after colposcopy, the risk of preterm delivery in women who had a treatment was 9.1% (283/3095) compared with 8.3% (396/4770) in women who had a punch biopsy only (adjusted relative risk 1.19, 1.01 to 1.41). The absolute increased risk of preterm delivery after treatment when compared with a biopsy only adjusted for study site, parity, and maternal age was 1.5 per 100 births (0.1% to 2.9%).The relative risks for treated versus punch biopsy were similar for births before the histological sample was taken (table 3?). Of births before histology, 7.8% (81/1045) of those in women who were subsequently treated were preterm compared with 6.3% (95/1513) in women who subsequently had a punch biopsy and no treatment (adjusted relative risk 1.31, 0.97 to 1.76, table 3). Thus the risk ratio comparing births after treatment with births before histology adjusting for disease history was 0.91 (95% confidence interval 0.66 to 1.26).View this table:View PopupView InlineTable 3 Adjusted relative risks for association between cervical histology and preterm deliveryThe proportion of births that were under 33 gestational weeks (see supplementary table A3) in those women who had a histology sample taken before birth was 2.8% (243/8779) compared with 2.0% (66/3368) in women who had a histology sample taken after birth (adjusted relative risk 1.60, 1.18 to 2.18). The adjusted relative risk in births after colposcopy comparing treatment with biopsy only was 1.23 (0.89 to 1.69). Further adjustment for disease history yielded a relative risk for delivery under 33 weeks of 0.81 (0.43 to 1.52).Since the analysis was limited to the first recorded birth in each woman, the risk ratio (treated versus punch biopsy) was also examined and was different in second or subsequent births after colposcopy compared with first births after colposcopy. The adjusted relative risk for treatment in second and subsequent births after colposcopy was non-significantly (P=0.39) greater than for first births after colposcopy, but similar to that of the last birth before colposcopy (see supplementary table A4).Within womanAn analysis was carried out restricted to women who had a birth both before and after a colposcopy (within woman comparison, table 2). For each woman the last birth before treatment and the first birth after treatment was only included. This left 1078 women. There were 80 (7.4%) preterm births before colposcopy and 98 (9.1%) after colposcopy (relative risk 1.23, 95% confidence interval 0.95 to 1.59, P=0.15). In 372 women with births both before and after treatment, there were 30 preterm births after treatment and 32 before treatment (the relative risk of preterm birth after treatment was 0.94, 0.62 to 1.43). In 501 women with births both before and after punch biopsy, the relative risk of preterm birth after a punch biopsy was 1.14 (0.77 to 1.66). The ratio of the risk ratios (of preterm birth after:before colposcopy) for treated compared with untreated (biopsy only) women was 0.82 (0.27 to 3.17, see supplementary table A5).Since in general the risk of a preterm birth is greater in a first birth than in a second birth (8.8% v 7.6% in the study cohort, table 1), and given that most women who gave birth both before and after colposcopy had exactly one birth before colposcopy (so that that second births were compared with first births), the relative risk will have been underestimated. However, in women with at least two births the risk of preterm on first birth was less (8.1%), yielding a relative risk of 0.98 (0.85 to 1.13) for second birth compared with first birth in women with at least two births.DiscussionIn this study of 18?441 singleton deliveries in women who had a cervical biopsy sample taken during colposcopy in England, the additional risk of a preterm birth over that in the general population was 2.1 per 100 singleton births, yielding a relative risk of 1.31. Comparing births in women within the cohort (table 2), the relative risk in women who previously had treatment (conisation, large loop excision of the transformation zone, loop excision) compared with those who only had a biopsy was 1.19. However, the relative risk of preterm delivery in women before colposcopy comparing those who subsequently had treatment with those who subsequently only had a biopsy was also greater than 1 (1.33). Consequently the risk ratio comparing births after treatment with births before histology adjusting for disease history was less than 1, with an upper limit of the 95% confidence interval of 1.26. Furthermore, in 372 women who gave birth both before and after treatment for cervical intraepithelial neoplasia, the number of births that were preterm was fewer after treatment than before (30 v 32).Strengths and limitations of the studyIn considering causality in the absence of a randomised controlled trial, we took into account confounding by risk modifying factors and the temporality of cause and effect. We allowed for the possibility of general confounding: factors (such as smoking or ethnicity) that might predispose a woman to both abnormal cervical cytology and preterm births; confounding by disease severity—the possibility that factors (such as immune suppression) that make it more likely for a woman to have high grade disease (and be treated by cone excision) will also make her more likely to have a preterm birth; and disease causing prematurity—that the disease in itself (or factors that lead to its presentation) rather than its treatment makes a woman more likely to have a preterm birth. In our analyses we attempted to take into account all three possible sources of confounding. The first analyses included all singleton births in the cohort to ease comparison with published population statistics. Although we present the risk of preterm birth for both the whole cohort and births after treatment, we did not adjust for possible confounding. The internal analysis eliminates general confounding because all women by definition have had colposcopy. To exclude confounding by disease severity, we considered women with treatment and compared births after treatment with those before treatment. To exclude confounding owing to disease causing preterm delivery, we compared births after treatment with those after biopsy only. To take account of both disease severity and temporality, we calculated the ratio of these relative risks. This ratio was less than 1, suggesting that the associations observed in the other analyses could all result from confounding. Finally we took births before and after colposcopy in the same woman. Such an analysis is complicated by changing parity and maternal age, but the relative risk after treatment was less than 1. Additionally, the post-colposcopy relative risk in treated women was less than that in women who only had a punch biopsy (see supplementary table A5) suggesting that confounding has not artificially reduced the relative risk of treatment. However, for 19.4% of women we do not know the type of procedure carried out at colposcopy. This could have an important impact on the estimates comparing treated with untreated women if, for instance, those with an unknown procedure were more likely both to be treated and to subsequently have a preterm birth. This problem will be further investigated in phase 2 of this study (a nested case-control study).The results in this paper depend on the quality of birth data submitted by participating clinics (NHS trusts) to hospital episode statistics. The proportion of preterm births will also be affected by the population served by the clinic. For example, Whipps Cross Hospital serves a community with a high proportion of ethnic minority groups, whereas St Mary’s Hospital is a referral centre for high risk pregnancies from across London.There is also a question as to how representative the colposcopy units in this study are of colposcopy done across England. The 12 participating units included both teaching and non-teaching hospitals but were primarily self selected. We therefore investigated the extent to which they seemed to be representative of all colposcopy clinics in England on the basis of published data. Comparing nationally collected statistics from the clinics in this study with the other (n=215) clinics in England showed that in terms of these statistics, the clinics in this study were not atypical of the rest of the country. Colposcopy clinics in England are audited every three years, as are all colposcopists to maintain their membership with the British Society for Colposcopy and Cervical Pathology. Thus the standard of colposcopy in England is likely to be more homogeneous than in many countries. Even if treatment in smaller centres resulted in a greater risk of preterm delivery, we believe that this study (with 8.5% of all new patients in England) is representative of most colposcopy in England.We tried to minimise biases in this study by restricting the analysis to the first live singleton birth recorded for each women and by adjusting the relative risk by study centre. Additionally, the design of the study avoided recall and selection bias. However, we had no information on risk modifying factors such as ethnicity or smoking, nor did we have any detailed information on treatment received at colposcopy.Comparison with other studiesThis is the largest study of preterm delivery in women with cytological abnormalities in the United Kingdom. A meta-analysis including 30 cohort studies in total found that the type of comparison group was important in determining the relative risk of preterm delivery.14 When the comparison group was external (such as the general population) the relative risk of preterm delivery was 1.97 (95% confidence interval 1.78 to 2.17). Similarly, when the comparison group was internal (comparing births after treatment with those before treatment), the relative risk was 1.96 (1.46 to 2.64). However, when the analysis was carried out within a cohort of women with cytological abnormalities comparing treated with untreated women, the relative risk was 1.25 (0.98 to 1.58). Three studies from Nordic countries obtained relative risks between 1.8 and 2.8 (all except one not included in the meta-analysis). Of the excluded studies, a large study from Norway found a relative risk of 2.13 (95% confidence interval 2.06 to 2.20) comparing (all not just singleton) births after treatment with births before treatment, but reported a declining relative risk during the study period.4 The absolute risk was 17.2% (in 15?108 births after treatment). Our preterm risk in treated women is clearly less. A study from Denmark had a relative risk of 2.8 (95% confidence interval 2.3 to 3.5) compared with an external control group.15 The same study also provided a within woman odds ratio of 2.8 (95% confidence interval 1.0 to10.0) as did a study from Finland (1.8, 95% confidence interval 1.04 to 3.21).16The relative risk of preterm delivery after treatment observed in this study compared with the population as a whole is substantially (and significantly) less than that found in the studies included in the Bruinsma meta-analysis.14 Additionally, our internal analyses tend not to support the hypothesis that treatment increases the risk of preterm delivery, by a factor of about 1.7 to 2.0; the analysis that adjusts for both the timing of the delivery relative to colposcopy and whether there was treatment or just a punch biopsy gives a relative risk of 0.91 (95% confidence interval 0.66 to 1.26) for births subsequent to treatment.Several studies have suggested that it is the amount of tissue removed from the cervix that produces the excess risk, not the procedure itself.17 18 19 It is possible that owing to the quality assurance of the colposcopy programme in England through both the cervical screening programme and the British Society for Colposcopy and Cervical Pathology, tissue removed during colposcopy is kept to a minimum and this could explain the smaller relative risks that we observed. This might be particularly relevant in the self selected colposcopy units in this study. We are currently undergoing phase 2 of this study in which we will attempt to obtain detailed colposcopy and pathology information on all women with a preterm delivery and a sample of women with a term delivery in this cohort. In particular, we are recording the measurements of the tissue excised and whether the woman was treated more than once. It seems likely that removal or destruction of a large amount of tissue may increase the risk of subsequent preterm delivery more than is seen on average.Conclusions and policy implicationsThe results presented here are encouraging. Accepting the limitations of this study, women treated within the NHS cervical screening programme and particularly those treated in large colposcopy units should be reassured that, in this study of 44?000 women having colposcopy including 14?265 singleton births after colposcopy, the risk of a birth being preterm was 9.0% and only slightly greater than the risk in the general population. Phase 2 of this study should strengthen the results presented here and provide information on the risk associated with the depth of cervical tissue removed.What is already known on this topicMost studies of preterm delivery after large loop excision of the transformation zone found that treatment was associated with increased risk An influential meta-analysis (27 studies) found a relative risk of 1.70 (95% confidence interval 1.24 to 2.35)Subsequent large studies from Nordic countries estimated the relative risk to be between 1.8 and 2.8What this study addsAfter adjusting for confounding, the increased risk of preterm delivery in births after treatment for cervical intraepithelial neoplasia ceases to existThere is only a small chance (2.5%) that the risk of preterm delivery is increased by more than 3.5 per 100 births in women treated in England The relative risk here is significantly less than reported previously possibly because colposcopy treatment is quality assuredNotesCite this as: BMJ 2012;345:e5174FootnotesMembers of the PaCT Study Group were responsible for the collection of data included in this study. N Gul and A Miles (Wirral University Teaching Hospital), A Hollingworth and R Wuntakal (Whipps Cross University Hospital London), N Singh and A Parberry (Barts and the London NHS Trust), J Palmer (Royal Hallamshire Hospital, Sheffield), N Das and L Russ (Royal Cornwall Hospital), N Wood and S Preston (Royal Preston Hospital Lancashire), M Hannemann and D Fuller (Royal Devon and Exeter NHS Foundation Trust), K Lincoln and P Rolland (The James Cook University Hospital, South Tees), S Ghaem-Maghami and P Soutter (Hammersmith Hospital, Imperial College), R Hutson (St James University Hospital, Leeds), P Senguita and J Dent (North Durham County and Darlington Trust), and D Lyons (St Mary’s Hospital, Imperial College).Contributors: PS analysed the data and designed the database. He is the guarantor of the study and therefore accepts full responsibility for the work and the conduct of the study, had access to the data, and controlled the decision to publish. AC collated and analysed the data. All authors designed and established the study, wrote the paper, and approved the final version.Funding: This manuscript presents independent research funded by the National Institute for Health Research (NIHR) under its research for patient benefit programme (No PB-PG-1208-16187). The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR, or the Department of Health. Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; and no other relationships or activities that could appear to have influenced the submitted work.Ethical approval: This study was approved by the Brompton, Harefield, and NHLI research ethics committee, Charing Cross Hospital, London (No 09/H0708/65).Data sharing: The statistical code is available from the corresponding author at p.sasieni{at}qmul.ac.uk.This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.References?Lancucki L, ed. Cervical screening programme, England: 2005-06. NHS Information Centre, 2006. ?Luesley DLS, ed. NHS cervical screening programme. Colposcopy and programme management. Guidelines for the NHS cervical screening programme. NHS Information Centre, 2004.?Kyrgiou M, Koliopoulos G, Martin-Hirsch PL, Arbyn M, Prendiville W. Obstetric outcome after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet2006;367:489-98.OpenUrlCrossRefMedlineWeb of Science?Albrechtsen S, Rasmussen S, Thoresen S, Irgens LM, Iversen OE. Pregnancy outcome in women before and after cervical conisation: population based cohort study. BMJ2008;337:a1343.OpenUrlFREE Full Text?Reilly R, Paranjothy S, Beer H, Brooks C, Fielder H, Lyons R. Birth outcomes following treatment for precancerous changes to the cervix: a population-based record linkage study. BJOG2012;119:236-44.OpenUrlCrossRefMedline?Cruickshank M, Flannelly G, Campbell DM. Fertility and pregnancy outcome following large loop excision of the cervical transformation zone. Br J Obstet Gynaecol1995;102:467-70.OpenUrlMedlineWeb of Science?Shanbhag S, Clark H, Timmaraju V, Bhattacharya S, Cruickshank M. Pregnancy outcome after treatment for cervical intraepithelial neoplasia. Obstet Gynecol2009;114:727-35.OpenUrlCrossRefMedlineWeb of Science?Haffenden DK, Bigrigg A, Codling BW, Read MD. Pregnancy following large loop excision of the transformation zone. Br J Obstet Gynaecol1993;100:1059-60.OpenUrlMedlineWeb of Science?Tan L, Pepera E, Haloob RK. The outcome of pregnancy after large loop excision of the transformation zone of the cervix. J Obstet Gynaecol2004;24:25-7.OpenUrlCrossRefMedline?British Society for Colposcopy and Cervical Pathology. Constitution. BSCCP, 1975.?HES Online. What is HES? 2005-2007. 2011. www.hesonline.nhs.uk/Ease/servlet/ContentServer?siteID=1937&categoryID=456>.?NHS Information Centre. NHS maternity statistics, 2000-2010. 2010. www.ic.nhs.uk/pubs.?Office for National Statistics. Gestation-specific infant mortality in England and Wales, 2009. www.ons.gov.uk/ons/rel/child-health/gestation-specific-infant-mortality-in-england-and-wales/2009/index.html.?Bruinsma FJ, Quinn MA. The risk of preterm birth following treatment for precancerous changes in the cervix: a systematic review and meta-analysis. BJOG2011;118:1031-41.OpenUrlCrossRefMedline?Ortoft G, Henriksen T, Hansen E, Petersen L. After conisation of the cervix, the perinatal mortality as a result of preterm delivery increases in subsequent pregnancy. BJOG2010;117:258-67.OpenUrlCrossRefMedline?Jakobsson M, Gissler M, Paavonen J, Tapper AM. Loop electrosurgical excision procedure and the risk for preterm birth. Obstet Gynecol2009;114:504-10.OpenUrlCrossRefMedlineWeb of Science?Noehr B, Jensen A, Frederiksen K, Tabor A, Kjaer SK. Loop electrosurgical excision of the cervix and subsequent risk for spontaneous preterm delivery: a population-based study of singleton deliveries during a 9-year period. Am J Obstet Gynecol2009;201:33,e1-6.OpenUrlMedline?Acharya G, Kjeldberg I, Hansen SM, Sorheim N, Jacobsen BK, Maltau JM. Pregnancy outcome after loop electrosurgical excision procedure for the management of cervical intraepithelial neoplasia. Arch Gynecol Obstet2005;272:109-12.OpenUrlCrossRefMedline?Sadler L, Saftlas A, Wang W, Exeter M, Whittaker J, McCowan L. Treatment for cervical intraepithelial neoplasia and risk of preterm delivery. JAMA2004;291:2100-6.OpenUrlCrossRefMedlineWeb of Science
CiteULike
Connotea
Del.icio.us
Digg
Facebook
Mendeley
Reddit
Twitter
Stumbleupon Latest jobsUK jobsInternational jobsUK jobs AXESS LTD, EU MEDICAL ADVISER. (23 Aug 2012)SOLENT NHS TRUST SPECIALTY DOCTOR COMMUNITY SEXUAL AND REPRODUCTIVE HEALTHCARE (23 Aug 2012)Sessional roles for Doctors Scotland: (23 Aug 2012)UNIVERSITY OF LIVERPOOL SENIOR LECTURER (CLINICAL) IN NEONATOLOGY (23 Aug 2012) show me all jobs >> International jobs DOCTORS - ENJOY THE GREAT LIFESTYLE in Australia and New Zealand. SHO/ Registrar/ Consultant and GP openings. (6 Jul 2012)International Medical Recruitment - Medical Jobs in Australia and New Zealand (24 Aug 2012)Saudi Arabia - UAE - Kuwait On behalf of clients Shamco International Recruitment would like to invite applicants for various positions (24 Aug 2012)The Eureka Medical and Bougainvillea Clinic Consultants in General Internal Medicine and Paediatrics required in the British Virgin Islands (23 Aug 2012) show me all jobs >> Rapid responses Latest ResponsesMost responsesLatest Responses Re: Roy Simpson Published 24 August 2012 Why corporate power is a public health priority Published 24 August 2012 Cervical Intraepithelial Neoplasia and Pregnancy Management Published 24 August 2012 Incentives Published 24 August 2012 Re: Unhappy pills Published 24 August 2012 more Most responses Unhappy pills (11 responses) Published 10 August 2012
Transcatheter aortic valve implantation (TAVI): risky and costly (8 responses)Published 31 July 2012
We should not let families stop organ donation from their dead relatives (8 responses)Published 7 August 2012
Diagnosis and management of cellulitis (8 responses)Published 7 August 2012
Association between psychological distress and mortality: individual participant pooled analysis of 10 prospective cohort studies (7 responses)Published 31 July 2012
more THIS WEEK'S POLLRead related article
See previous polls
Recent blogs and podcastsBlogsPodcastsBlogs Domhnall MacAuley: Santa Claus and Lance Armstrong (24 Aug 2012)Tiago Villanueva: Does it matter where you do your medical training? (23 Aug 2012)James Drife: Doctors on the Fringe (22 Aug 2012)Steve Yentis: Infamous names in anaesthesia—part two (21 Aug 2012)Tessa Richards: Personal information empowers and its shift to the people makes sense (20 Aug 2012) more >> Podcasts Ecological public health (24 Aug 2012)Fighting the food giants (17 Aug 2012)Is the drug pipeline really drying up? (10 Aug 2012)Renal patient records (3 Aug 2012)Shift workers' health and assessing risk of violence (27 Jul 2012) more >> BMJ most popular Most sharedMost searchedMost shared Sample size calculations: should the emperor’s clothes be off the peg or made to measure? (804 views)The truth about sports drinks (696 views)When financial incentives do more good than harm: a checklist (650 views)Cochrane review finds no proved benefit in drug treatment for patients with mild hypertension (598 views)Myalgia while taking statins (589 views) Most searched Kathleen Hilditchguyattchronic liver diseasehow to read a paperFrance Follow BMJ OnView the original article here
This post was made using the Auto Blogging Software from WebMagnates.org This line will not appear when posts are made after activating the software to full version.
ليست هناك تعليقات:
إرسال تعليق